Popularly: Very general set of equations describing almost any flow of fluids
Flow over stalled airfoil
Turbulence is the most important unsolved problem of classical physics
Eames & Flor (2011)
There is a physical problem that is common to many fields, that is very old, and that has not been solved. It is not the problem of finding new fundamental particles, but something left over from a long time ago—over a hundred years. Nobody in physics has really been able to analyze it mathematically satisfactorily in spite of its importance to the sister sciences. It is the analysis of circulating or turbulent fluids.
Feynman et al. (1965)
The Clay Mathematics Institute has identified the existence and smoothness of solutions to the Navier-Stokes equations as one of the seven Millennium Prize Problems.
The Navier-Stokes equations describes some very complex physics not fully understood and their mathematical properties are still being investigated by mathematicians
Examples of Engineering Applications based on Navier-Stokes solvers (CFD):
Knowledge
Skills
Objective: Detailed information on flow inside domain of interest
Conservation of mass for a finite CV (application of Reynolds Transport Theorem) $$\frac{D M_{sys}}{D t} = \frac{d}{dt}\int_{CV} \rho \, dV\llap{--} + \int_{CS} \rho \boldsymbol{V} \cdot \boldsymbol{\hat{n}} \, dA = 0$$
Consider an infinitesimal control volume with dimensions $\delta x\,\delta y\,\delta z$
Infinitesimal CV with mass flow rate in $x$ at faces
Reformulation of volume integral and surface integrals $$ \frac{D M_{sys}}{D t} = \textcolor{#cc445b}{\frac{d}{dt}\int_{CV} \rho \, dV\llap{--}} + \textcolor{#0e8563}{\int_{CS} \rho \boldsymbol{V} \cdot \boldsymbol{\hat{n}} \, dA} = 0 $$
Infinitesimal CV with mass flow rate in $x$ at faces
Reformulation of surface integral $$ \frac{D M_{sys}}{D t} = \frac{\partial \rho}{\partial t} \, \delta x\, \delta y\, \delta z + \textcolor{#0e8563}{\int_{CS} \rho \boldsymbol{V} \cdot \boldsymbol{\hat{n}} \, dA} = 0 $$
Infinitesimal CV with mass flow rate in $x$ at faces
Reformulation of surface integral $$ \frac{D M_{sys}}{D t} = \frac{\partial \rho}{\partial t} \, \delta x\, \delta y\, \delta z + \textcolor{#0e8563}{\int_{CS} \rho \boldsymbol{V} \cdot \boldsymbol{\hat{n}} \, dA} = 0 $$
Reformulation of surface integral $$ \frac{D M_{sys}}{D t} = \frac{\partial \rho}{\partial t} \, \delta x\, \delta y\, \delta z + \textcolor{#0e8563}{\int_{CS} \rho \boldsymbol{V} \cdot \boldsymbol{\hat{n}} \, dA} = 0 $$
Reformulation of surface integral $$ \frac{D M_{sys}}{D t} = \frac{\partial \rho}{\partial t} \, \delta x\, \delta y\, \delta z + \textcolor{#0e8563}{\int_{CS} \rho \boldsymbol{V} \cdot \boldsymbol{\hat{n}} \, dA} = 0 $$
Reformulation $$ \frac{D M_{sys}}{D t} = \frac{\partial \rho}{\partial t} \, \delta x\, \delta y\, \delta z + \nabla \cdot (\rho \boldsymbol{V}) \, \delta x\, \delta y\, \delta z = 0$$
$$ \Downarrow $$ $$ \left( \frac{\partial \rho}{\partial t} + \nabla \cdot (\rho \boldsymbol{V}) \right) \delta x\, \delta y\, \delta z = 0 $$The compressible continuity equation:
$$\frac{\partial \rho}{\partial t} + \nabla \cdot (\rho \boldsymbol{V}) = 0$$Incompressibility?
Reformulation $$ \frac{D M_{sys}}{D t} = \frac{\partial \rho}{\partial t} \, \delta x\, \delta y\, \delta z + \nabla \cdot (\rho \boldsymbol{V}) \, \delta x\, \delta y\, \delta z = 0$$
$$ \Downarrow $$ $$ \left( \frac{\partial \rho}{\partial t} + \nabla \cdot (\rho \boldsymbol{V}) \right) \delta x\, \delta y\, \delta z = 0 $$The compressible continuity equation:
$$\frac{\partial \rho}{\partial t} + \nabla \cdot (\rho \boldsymbol{V}) = 0$$The incompressible continuity equation:
$$\nabla \cdot \boldsymbol{V} = 0$$Corresponds to a zero volumetric dilatation rate
Approach
Conservation of linear momentum for a finite CV (application of Reynolds Transport Theorem) $$ \boldsymbol{F} = \frac{D \boldsymbol{P_{sys}}}{D t} = \frac{d}{dt}\int_{CV} \boldsymbol{V} \rho \, dV\llap{--} + \int_{CS} \boldsymbol{V}\rho \boldsymbol{V} \cdot \boldsymbol{\hat{n}} \, dA$$
Conservation of linear momentum for a finite CV (application of Reynolds Transport Theorem)
$$\boldsymbol{F} = \frac{D \boldsymbol{P_{sys}}}{D t} =
\textcolor{#cc445b}{\frac{d}{dt}\int_{CV} \boldsymbol{V}\rho \, dV\llap{--}}
+
\textcolor{#0e8563}{\int_{CS} \boldsymbol{V}\rho \boldsymbol{V} \cdot \boldsymbol{\hat{n}} \, dA}
$$
Infinitesimal CV
Conservation of linear momentum $$ \boldsymbol{F} = \frac{D \boldsymbol{P_{sys}}}{D t} = \frac{\partial}{\partial t} (\rho \boldsymbol{V}) \, \delta x\, \delta y\, \delta z + \textcolor{#0e8563}{\int_{CS} \boldsymbol{V}\rho \boldsymbol{V} \cdot \boldsymbol{\hat{n}} \, dA} $$
Conservation of linear momentum for infinitesimal CV $$ \delta \boldsymbol{F} = \frac{\partial}{\partial t} (\rho \boldsymbol{V}) \, \delta x\, \delta y\, \delta z + \nabla \cdot (\rho\boldsymbol{V}\boldsymbol{V}) \, \delta x\, \delta y\, \delta z $$ $$ \Updownarrow $$ $$ \delta \boldsymbol{F} = \left( \frac{\partial}{\partial t} (\rho \boldsymbol{V}) + \nabla \cdot (\rho \boldsymbol{V}\boldsymbol{V}) \right) \, \delta x\, \delta y\, \delta z $$
Conservation of linear momentum for infinitesimal CV $$ \delta \boldsymbol{F} = \frac{\partial}{\partial t} (\rho \boldsymbol{V}) \, \delta x\, \delta y\, \delta z + \nabla \cdot (\rho\boldsymbol{V}\boldsymbol{V}) \, \delta x\, \delta y\, \delta z $$ $$ \Updownarrow $$ $$ \delta \boldsymbol{F} = \left( \frac{\partial}{\partial t} (\rho \boldsymbol{V}) + \nabla \cdot (\rho \boldsymbol{V}\boldsymbol{V}) \right) \, \delta x\, \delta y\, \delta z $$
Next step: Describe the forces $\delta \boldsymbol{F}$ acting on the infinitesimal CV
Next step: Describe the forces $\delta \boldsymbol{F}$ acting on the infinitesimal CV
Infinitesimal CV with surfaces forces acting in $x$
Description of the net force $\delta \boldsymbol{F}$ acting on the infinitesimal CV
Description of the net force $\delta \boldsymbol{F}$ acting on the infinitesimal CV
Key result: The general differential equations of fluid motion (Cauchy momentum equation): $$ \rho \ \boldsymbol{g} + ( \nabla \cdot \boldsymbol{\sigma} ) = \rho \left( \frac{\partial \boldsymbol{V}}{\partial t} + (\boldsymbol{V} \cdot \nabla) \boldsymbol{V} \right) $$
To close the problem, we need to relate stresses to velocities, i.e., elimate unkowns
To close the problem, we need to relate stresses to velocities, i.e., elimate unkowns
Stress tensor for incompressible Newtonian fluid $$ \boldsymbol{\sigma} = -p \boldsymbol{I_3} + \mu (\nabla \boldsymbol{V} + (\nabla \boldsymbol{V})^{\mathrm{T}}) $$
Substituting into the equations of fluid motion $$ \rho \ \boldsymbol{g} + \nabla \cdot \boldsymbol{\sigma} = \rho \left( \frac{\partial \boldsymbol{V}}{\partial t} + (\boldsymbol{V} \cdot \nabla) \boldsymbol{V} \right) $$ $$ \Downarrow $$ $$ \rho \ \boldsymbol{g} + \nabla \cdot (-p \boldsymbol{I_3} + \mu (\nabla \boldsymbol{V} + (\nabla \boldsymbol{V})^{\mathrm{T}})) = \rho \left( \frac{\partial \boldsymbol{V}}{\partial t} + (\boldsymbol{V} \cdot \nabla) \boldsymbol{V} \right) $$
Using vector calculus identities and the continuity equation $$ \nabla \cdot (p \boldsymbol{I_3}) = \nabla p $$ $$ \nabla \cdot (\nabla \boldsymbol{V}) = \nabla^2 \boldsymbol{V} $$ $$ \nabla \cdot ((\nabla \boldsymbol{V})^{\mathrm{T}}) = \nabla(\nabla \cdot \boldsymbol{V}) = 0 \ \ \text{(continuity)} $$
Final form of the incompressible Navier-Stokes equations $$ \rho\left( \frac{\partial \boldsymbol{V}}{\partial t} + (\boldsymbol{V} \cdot \nabla) \boldsymbol{V} \right) = -\nabla p + \mu \nabla^2 \boldsymbol{V} + \rho \boldsymbol{g} $$
Final form of the incompressible Navier-Stokes equations $$ \rho\left( \frac{\partial \boldsymbol{V}}{\partial t} + (\boldsymbol{V} \cdot \nabla) \boldsymbol{V} \right) = -\nabla p + \rho \boldsymbol{g} + \mu \nabla^2 \boldsymbol{V} $$
We have now derived the formidable incompressible Navier-Stokes equations $$ \rho\left( \frac{\partial \boldsymbol{V}}{\partial t} + (\boldsymbol{V} \cdot \nabla) \boldsymbol{V} \right) = -\nabla p + \rho \boldsymbol{g} + \mu \nabla^2 \boldsymbol{V} $$